Putting the Parts Together: Trade, Vertical Linkages, and Business Cycle Comovement

Julian di Giovanni¹ Andrei A. Levchenko^{1,2}

¹International Monetary Fund

²University of Michigan

July 9, 2008

The views expressed in this paper are those of the authors and should not be attributed to the International Monetary Fund, its Executive Board, or its management.

Introduction ●000	Methodology and Data	Regression Results 0	Impact on the Aggregate	Conclusion O
Motivatio	on			

- Stronger bilateral trade linkages are associated with higher aggregate comovement
 - Frankel and Rose (1998), many others since: country pairs that trade more with each other have more correlated business cycles
- Trade has increased exponentially the last few decades. Increase is due not only to a reduction in barriers, but also a change in the production structure (Yi 2003)
- The mechanisms behind the trade-comovement regularity are not well understood

Introduction ○●○○	Methodology and Data	Regression Results 0	Impact on the Aggregate	Conclusion 0
Motivatio	n			

- **Empirically**, debate about the role of intra-industry trade and sectoral similarity in accounting for the impact of trade on comovement
 - intra-industry trade: Koo and Gruben (2006), Calderon et al. (2007)
 - sectoral similarity: Imbs (2004), but not Baxter and Kouparitsas (2005)
- **Quantitatively,** the IRBC models have trouble matching the magnitude of the Frankel-Rose result ("trade-comovement puzzle"), and latest work emphasizes vertical linkages
 - Kose and Yi (2001, 2006), Huang and Liu (2007), Burstein, Kurz, and Tesar (2007)
- Currently, no disaggregated empirical evidence regarding the role of production structure, intra-industry trade, and input-output linkages

Introduction	Methodology and Data	Regression Results 0	Impact on the Aggregate	Conclusion 0
This Pap	er			

- Examines the link between bilateral trade, sectoral comovement, and aggregate comovement using sector-level data on production and trade
- Uses Input-Output matrices to gauge the magnitude of vertical production linkages for the role of trade in increasing comovement
- Quantifies the relative importance of the various channels in generating aggregate comovement
 - Intra- vs. Inter-industry comovement
 - Input-Output linkages

Introduction	Methodology and Data	Regression Results 0	Impact on the Aggregate	Conclusion O
Preview	of Results			

- Trade at sector level has a robust positive effect on comovement at sector level
- Intra-industry comovement-trade elasticity larger than inter-industry one, but intra-industry can only explain a small portion of aggregate effect: Within-Sector: 18%; Cross-Sector: 82%
- Strong evidence that vertical production linkages are quantitatively important. Vertical linkages explain almost 30% of the overall impact of bilateral trade on comovement
- Ocomovement-trade elasticity larger for North-North country pairs, but the relative role of vertical linkages in explaining this elasticity is larger for North-South pairs (17% vs. 56%)

Introduction	Methodology and Data	Regression Results	Impact on the Aggregate	Conclusion
0000	●00000000	O		O
Rusines	s Cycle Comove	ment		

• Aggregate growth in two countries c and d, each comprised of $i, j = 1, \dots, \mathcal{I}$ sectors:

$$y^c = \sum_{i=1}^{\mathcal{I}} s^c_i y^c_i \qquad y^d = \sum_{j=1}^{\mathcal{I}} s^d_j y^d_j$$

• Business cycle (aggregate) covariance is then:

$$\mathsf{Cov}(y^c, y^d) = \mathsf{Cov}\left(\sum_{i=1}^{\mathcal{I}} s_i^c y_i^c, \sum_{j=1}^{\mathcal{I}} s_j^d y_j^d\right)$$
$$= \sum_{i=1}^{\mathcal{I}} \sum_{j=1}^{\mathcal{I}} s_i^c s_j^d \mathsf{Cov}\left(y_i^c, y_j^d\right)$$

• Or, rewritten in terms of correlations:

$$\rho^{cd} = \frac{1}{\sigma^c \sigma^d} \sum_{i=1}^{\mathcal{I}} \sum_{j=1}^{\mathcal{I}} s_i^c s_j^d \sigma_i^c \sigma_j^d \rho_{ij}^{cd},$$

where σ^c and σ^d are the standard deviations of aggregate growth in the two countries, while σ_i^c and σ_j^d are the standard deviations of the growth rates in individual sectors *i* and *j* in countries *c* and *d* respectively

Introduction	Methodology and Data	Regression Results	Impact on the Aggregate	Conclusion
0000	००●००००००	0		0
Estimatin	g Equations			

• Instead of examining the LHS of this identity, we use sector-level data to study the components of the RHS:

1 Baseline specification:

$$\rho_{ij}^{cd} = \alpha + \beta_1 \mathsf{Trade}_{ij}^{cd} + \mathbf{u} + \varepsilon_{ij}^{cd}$$

2 Intra- vs. Inter-industry effect:

$$\rho_{ij}^{cd} = \alpha + \beta_1 \mathsf{Trade}_{ij}^{cd} + \beta_2 \mathbf{1}_{[i=j]} \mathsf{Trade}_{ij}^{cd} + \mathbf{u} + \varepsilon_{ij}^{cd}$$

Introduction 0000	Methodology and Data	Regression Results 0	Impact on the Aggregate	Conclusion O
Vertical L	.inkages			

- We would like to exploit variation in the extent to which a sector uses other sectors as intermediates in production
- Hypothesis: trade increases comovement more in sectors that use each other as intermediates.
- **3** Vertical Linkages and Comovement

$$\rho_{ij}^{cd} = \alpha + \beta_1 \mathsf{Trade}_{ij}^{cd} + \gamma_1 \left(\mathsf{IO}_{ij} \mathsf{Exports}_i^{cd} + \mathsf{IO}_{ji} \mathsf{Exports}_j^{dc} \right) + \mathbf{u} + \varepsilon_{ij}^{cd}$$

4 Vertical Linkages Within and Across Sectors

$$\begin{split} \rho_{ij}^{cd} &= \alpha + \beta_1 \mathsf{Trade}_{ij}^{cd} + \gamma_1 \left(\mathsf{IO}_{ij} \mathsf{Exports}_i^{cd} + \mathsf{IO}_{ji} \mathsf{Exports}_j^{dc} \right) \\ &+ \beta_2 \mathbf{1}_{[i=j]} \mathsf{Trade}_{ij}^{cd} + \gamma_2 \left(\mathbf{1}_{[i=j]} \mathsf{IO}_{ij} \mathsf{Exports}_i^{cd} \right) \\ &+ \mathbf{1}_{[i=j]} \mathsf{IO}_{ji} \mathsf{Exports}_j^{dc} \right) + \mathbf{u} + \varepsilon_{ij}^{cd} \end{split}$$

Introduction	Methodology and Data	Regression Results	Impact on the Aggregate	Conclusion
0000	○○○○●○○○○○	0		0
Trade Me	easures			

• Exports between the country-sector pairs normalized by output or total trade:

$$\begin{aligned} & \operatorname{Trade}_{ij}^{cd} = \log\left(\frac{1}{T}\sum_{t}\frac{X_{i,t}^{cd} + X_{j,t}^{dc}}{Y_{t}^{c} + Y_{t}^{d}}\right) & (\operatorname{Measure I}) \\ & \operatorname{Trade}_{ij}^{cd} = \log\left(\frac{1}{T}\sum_{t}\frac{X_{i,t}^{cd} + X_{j,t}^{dc}}{Y_{i,t}^{c} + Y_{j,t}^{d}}\right) & (\operatorname{Measure II}) \\ & \operatorname{Trade}_{ij}^{cd} = \log\left(\frac{1}{T}\sum_{t}\frac{X_{i,t}^{cd} + X_{j,t}^{dc}}{(X_{t}^{c} + M_{t}^{c}) + (X_{t}^{d} + M_{t}^{d})}\right) & (\operatorname{Measure III}) \\ & \operatorname{Trade}_{ij}^{cd} = \log\left(\frac{1}{T}\sum_{t}\frac{X_{i,t}^{cd} + X_{j,t}^{dc}}{(X_{t}^{c} + M_{t}^{c}) + (X_{t}^{d} + M_{t}^{d})}\right) & (\operatorname{Measure III}) \end{aligned}$$

Introduction	Methodology and Data	Regression Results	Impact on the Aggregate	Conclusion
0000	○○○○○●○○○○	0		O
Estimatio	n and Data			

- Rich set of fixed effects to account for omitted variables
 - importer and exporter effects + sector effects
 - importer×exporter: control for aggregate comovement, financial links, gravity determinants of trade, etc.
 - sector-pair effects: control for sector characteristics, as well as arbitrary relationships between each pair of sectors.
- Sector-level production data: UNIDO
 - Construct correlations of country-sector pair growth rates over 1970–99
 - Industrial production index
 - Also HP-filtered value added: results are robust
- Bilateral trade: World Trade Data Feenstra et.al. (2005)
- 55 countries; 1970-1999; 28 manufacturing sectors, plus total manufacturing (ISIC Rev. 2)

Introduction	Methodology and Data	Regression Results	Impact on the Aggregate	Conclusion
0000	○○○○○●○○○	0		O
Input-O	utput Matrix			

- Input-output data: U.S. Bureau of Economic Analysis 1997 Benchmark version. Aggregate up to 3-digit ISIC Rev. 2
- We build a *Direct Requirements Table* at the 3-digit ISIC Revision 2 level from the detailed *Make* and *Use* tables and a concordance between the NAICS and the ISIC classifications
- The (i, j)th cell in the *Direct Requirements Table* gives the amount of a commodity in row *i* required to produce one dollar of final output in column *j*
- Note: we also experimented with country-specific I-O tables sourced from GTAP. Less disaggregated (17 sectors), but results were robust

 Introduction
 Methodology and Data
 Regression Results
 Impact on the Aggregate
 Conclusion

 Sample Summary Statistics for the Manufacturing Sector:

 1970–99

Sample	Average correlation	Trade/GDP
Full	0.115	0.0011
OECD/OECD	0.397	0.0036
non-OECD/non-OECD	0.065	0.0011
OECD/non-OECD	0.091	0.0005

Notes: Average correlation is the sample average of bilateral correlation of manufacturing output growth. Trade/GDP is sample average of the share of total bilateral sectoral trade of two countries to their GDP.

Introduction
0000Methodology and Data
000000000000Regression Results
oImpact on the Aggregate
00000Conclusion
oContour Representation of the BEA Input-Output Matrix
for 28 Manufacturing Sectors

Introduction	Methodology and Data	Regression Results	Impact on the Aggregate	Conclusion
0000	○○○○○○○○	0		0

GDP vs. Total Manufacturing Correlations

	GDP Correlation			
	Trade/	Trade/	Trade/	
	GDP	Output	Total Trade	
	(1)	(2)	(4)	
β	0.018**	0.016**	0.020**	
	(0.004)	(0.003)	(0.004)	
Observations	1967	1967	1967	
R^2	0.383	0.383	0.385	
	Manufacturing Sector Correlation			
	Trade/	Trade/	Trade/	
	GDP	Output	Total Trade	
	(1)	(2)	(4)	
β	0.014**	0.014**	0.016**	
	(0.004)	(0.003)	(0.004)	
Observations	1496	1496	1496	
R^2	0.465	0.467	0.467	

Notes: All specifications include importer and exporter effects ** significant at 1% level

di Giovanni and Levchenko

Introduction Methodology and Data Regression Results Impact on the Aggregate Conclusion 0000000000 • 000000000 0

Impact of Trade on Comovement at the Sector-Level

Dependent variable: ρ_{ij}^{cd}

	(1)	(2)	(3)	(4)
Trade	0.0015**	0.0013**	0.0012**	0.0011**
	(0.0001)	(0.0001)	(0.0001)	(0.0001)
Trade×Same Sector	-	0.0037**	-	0.0016**
	_	(0.0003)	_	(0.0005)
$Trade{ imes}IO$	-	_	0.0242**	0.0239**
	-	-	(0.0015)	(0.0025)
Trade×Same Sector×IO	-	-	_	-0.0073+
	-	-	-	(0.0040)
Observations	653,588	653,588	653,588	653,588
R^2	0.173	0.173	0.173	0.173

Note: All specifications use Trade/GDP and country- and sector-pair effects. ** significant at 1% level, $^+$ significant at 10% level

- What effect does each of these estimated channels have on the aggregate comovement?
- Aggregate comovement (from above):

$$\rho^{cd} = \frac{1}{\sigma^c \sigma^d} \sum_{i=1}^{\mathcal{I}} \sum_{j=1}^{\mathcal{I}} s_i^c s_j^d \sigma_i^c \sigma_j^d \rho_{ij}^{cd}$$

• The regressions map the change in bilateral sector-level trade to the change in bilateral sector-level correlation, so consider impact of sector-level change on the aggregate:

$$\Delta \rho^{cd} = \frac{1}{\sigma^c \sigma^d} \sum_{i=1}^{\mathcal{I}} \sum_{j=1}^{\mathcal{I}} s_i^c s_j^d \sigma_i^c \sigma_j^d \Delta \rho_{ij}^{cd}$$

Introduction 0000	Methodology and Data	Regression Results 0	Impact on the Aggregate	Conclusion O
		6		

Impact on the Aggregate Comovement

 We can use the three main sets of estimates to examine how ΔTrade^{cd}_{ij} impacts Δρ^{cd}_{ij}:

 Baseline:

$$\Delta \rho_{ij} = \beta_1 \times \Delta \mathsf{Trade}_{ij}^{cd}$$

and

$$\Delta \rho^{cd} = \frac{1}{\sigma^c \sigma^d} \sum_{i=1}^{\mathcal{I}} \sum_{j=1}^{\mathcal{I}} s_i^c s_j^d \sigma_i^c \sigma_j^d \Delta \rho_{ij}$$

2 Within- and Cross-Sector:

$$\begin{split} & \Delta \rho_{ij} = \beta_1 \times \Delta \mathsf{Trade}^{cd}_{ij} \\ & \Delta \rho_{ii} = (\beta_1 + \beta_2) \times \Delta \mathsf{Trade}^{cd}_{ij} \end{split}$$

and

$$\Delta \rho^{cd} = \underbrace{\frac{1}{\sigma^{c} \sigma^{d}} \sum_{i=1}^{\mathcal{I}} s_{i}^{c} s_{i}^{d} \sigma_{i}^{c} \sigma_{i}^{d} \Delta \rho_{ii}}_{\text{Within-Sector Component}} + \underbrace{\frac{1}{\sigma^{c} \sigma^{d}} \sum_{i=1}^{\mathcal{I}} \sum_{j \neq i}^{\mathcal{I}} s_{i}^{c} s_{j}^{d} \sigma_{i}^{c} \sigma_{j}^{d} \Delta \rho_{ij}}_{\text{Cross-Sector Component}}$$

3 Vertical Linkages:

$$\Delta
ho_{ij} = eta_1 imes \Delta \mathsf{Trade}^{\mathit{cd}}_{ij} + \gamma_1 imes (\mathsf{IO}_{ij} + \mathsf{IO}_{ji}) imes \Delta \;\mathsf{Trade}^{\mathit{cd}}_{ij}$$

and

$$\begin{split} \Delta \rho^{cd} &= \underbrace{\frac{1}{\sigma^c \sigma^d} \sum_{i=1}^{\mathcal{I}} \sum_{j=1}^{\mathcal{I}} s_i^c s_j^d \sigma_i^c \sigma_j^d \beta_1 \Delta \mathsf{Trade}_{ij}^{cd}}_{\mathsf{Main Effect}} \\ &+ \underbrace{\frac{1}{\sigma^c \sigma^d} \sum_{i=1}^{\mathcal{I}} \sum_{j=1}^{\mathcal{I}} s_i^c s_j^d \sigma_i^c \sigma_j^d \left(\mathsf{IO}_{ij} + \mathsf{IO}_{ji}\right) \gamma_1 \Delta \mathsf{Trade}_{ij}^{cd}}_{\mathsf{Vertical Linkage Effect}} \end{split}$$

Introduction 0000	Methodology and Data	Regression Results 0	Impact on the Aggregate	Conclusion O
Impact of	Trade on Aggr	egate Comov	ement: Baseline	Э,
Within vs	. Cross-Sector,	and Vertical	Linkage Estima	tes

	Total		
Specification	Effect		
Baseline: Pooled			
$\Delta \rho_A$	0.032		
	(0.002)		
Separate Within- and		Cross-Sector	Within-Sector
Cross-Sector Coefficients		Component	Component
$\Delta \rho_A$	0.034	0.0274	0.0061
	(0.002)	(0.0020)	(0.0004)
Share of Total		0.82	0.18
Vertical-Linkage		Main	Vertical Linkage
Interaction		Effect	Effect
$\Delta \rho_A$	0.035	0.025	0.010
	(0.002)	(0.002)	(0.001)
Share of Total		0.71	0.29

Introduction 0000	Methodology and Data	Regression Results 0	Impact on the Aggregate 0000●	Conclusion 0
Impact or	n Aggregate C	omovement:	Main Effect vs.	
Vertical L	inkage Estima	ates for Subs	amples	

OECD/OECD					
	Total	Main	Vertical Linkage		
	Effect	Effect	Effect		
$\Delta \rho_A$	0.103	0.086	0.018		
	(0.005)	(0.005)	(0.001)		
Share of Total		0.83	0.17		
	non-OECD	/non-OECE)		
	Total	Main	Vertical Linkage		
	Effect	Effect	Effect		
$\Delta \rho_A$	0.031	0.029	0.002		
	(0.005)	(0.005)	(0.001)		
Share of Total		0.94	0.06		
OECD/non-OECD					
	Total	Main	Vertical Linkage		
	Effect	Effect	Effect		
$\Delta \rho_A$	0.008	0.004	0.004		
	(0.003)	(0.003)	(0.001)		
Share of Total		0.44	0.56		

Introduction 0000	Methodology and Data	Regression Results 0	Impact on the Aggregate	Conclusion •
Conclusio	n			

- Stronger bilateral trade linkages are associated with higher aggregate comovement, but the mechanisms behind this fact are not well understood.
 - Previous literature emphasized the role of intra-industry trade and vertical linkages
- This paper: takes aggregate comovement apart into its sector-level building blocks, then puts them back together
 - Intra-industry trade is important, but within-sector comovement only explains about 18% of the total impact;
 - Vertical linkages explain about 29% of the impact of trade on comovement
- Evidence on vertical linkages accords well with the recent quantitative studies that model transmission of shocks through production chains
- BUT, some 70% of the overall estimated impact is still "unexplained" by vertical linkages...