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1 Introduction

A very interesting recent paper by Imbs, Mumtaz, Ravn and Rey (2002) argues that

the estimated persistence of the real exchange rate estimated in previous research is

biased upwards because past work has not taken into account the heterogeneity in

the dynamics of disaggregated relative prices. This is a very interesting and insightful

point. The purpose of this note is not to argue against this fact, which Imbs, Mumtaz,

Ravn and Rey show to hold theoretically. Instead, I wish to make two points. First,

I show that the method the authors use to solve the aggregation bias — the random

coefficient model (RCM) — does not match the implicit assumption that they are

making about the data generating process underlying the error terms. Second, a

simple extension of their data set changes the results considerably using the very

same techniques that they apply.

The first point that I make is a statistical one. By controlling for potential aggre-

gation bias, the authors actually force the estimated coefficient of the autocorrelation

∗E-mail: jdigio@econ.berkeley.edu. I would like to thank Jean Imbs for kindly providing me
with the price and real exchange rate data. I appreciate helpful discussions with Michael Jansson,
Maury Obstfeld, Tiago Ribeiro and Andy Rose. I also appreciate feedback from Morten Ravn and
Haroon Mumtaz. All remaining errors are my own. Please do not quote.
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function (ACF) to be smaller than what one might expect in a standard autoregres-

sive model. In particular, by using the RCM in a dynamic setting, the authors are

implicitly assuming that the shocks at the sectoral level (and hence in the aggregated

estimation) are correlated across time, even as T →∞. This is not necessarily a bad

assumption, but there was no reference to this fact in the paper. The question to

ask then is: What does the noise of the process look like? Does the autocorrelation

function asymptote to zero or not (as is assumed in the standard time series mod-

els used to examine real exchange rate persistence)? This question can be answered

by plotting the autocorrelation function at the sector level. If this function actually

asymptotes to zero, as is assumed in the literature (and seems to be assumed in the

paper), then the use of a random coefficients model (RCM) by Imbs, Mumtaz, Ravn

and Rey is incorrect in its present form. By estimating a RCM, the underlying ACF

of the errors does not go to zero by assumption. I shall show why this is so ana-

lytically using a very simple example. Specifically, I shall compare a simple AR(1)

process to an AR(1) process with an additional (time-invariant) random error. This

model can be thought as characterizing the price dynamics at the sector level, where

the additional random term would capture the error term from the assumption of

a random coefficient. I then present some sample autocorrelation functions that do

indeed show that the implicit assumption made by the authors is incorrect. Finally, I

suggest a simple estimation that should help control for this potential bias and show

that this does not in fact affect the estimated slope coefficients.

The second point I make questions the robustness of the results. The data used by

Imbs, Mumtaz, Ravn and Rey were missing real exchange rate data for six countries

for pre-1991 or pre-1993 because of missing nominal exchange rate data. Using the

original data, the authors find that the RCM yields a half-life point estimate of 14

months with a confidence interval ranging from 5 to 24 months. I simply update

the nominal exchange rate data and create the additional real exchange rate data for
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earlier years. I then run the same RCM model and find a half-life point estimate of

28 months with a 95% confidence interval ranging from 25 to 32 months. This small

and simple extension of the data doubles the point estimate and produces a lower

confidence interval larger than the original upper confidence interval estimated Imbs,

Mumtaz, Ravn and Rey. The RCM model still yields a half-life that is smaller than

convention, but this lack of robustness to the additon of easily available data is a

concern that the authors should address.

Section 2 presents a simple autoregressive model. Section 3 then extends this

simple model to include a random effect error term, and I show the bias that this

may create. Section 4 presents some sample autocorrelation functions and discusses

their implications. Section 5 presents estimations based on the extended data set, and

presents various robustness checks performed by cutting the data at different periods

and sectors. Section 6 concludes.

2 Simple Model

First, begin by noting the panel system that Imbs, Mumtaz, Ravn and Rey estimate:

qi,j,t = αi,j +
P∑

p=1

γi,j,pqi,j,t−p + εi,j,t, (1)

where i indexes the sector, j indexes the country (the US being the base country), p

is a given lag, γi,j,p = γp +ν1
i,j, αi,j = α+ν2

i,j, and εi,j,t is white noise. This is simply a

RCM, but also characterizes the price dynamics at the sector level independently; i.e.,

one must believe that this structure exists at the sector level regardless of whether

the data are pooled. If not, the pooled regression is not correct.

Now, consider a simple model of the real exchange rate for any given sector and

country pair where it follows the simple AR(1) process:

qi,j,t = a + bqi,j,t−1 + ei,j,t, (2)
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where E(ei,j,t) = 0, E
(
e2

i,j,t

)
= σ2

e , and E(ei,j,tei,j,s) = 0 if t 6= s.

The autocorrelation function is defined as

ρ(τ) =
E [(qi,j,t − µ) (qi,j,t−τ − µ)]

E
[
(qi,j,t − µ)2] , (3)

where the expectation is not conditional on any information, µ = E (qi,j,t) = 1
1−b

,

and ρ(0) = 1. It is crucial to remember that the expectation is not conditional on

any information (besides knowledge of the distribution underlying the shocks) when

turning to the random effects model in Section 3.

One can then easily show that the autocorrelation function ρ(·) is:

ρ(τ) = bτ , for τ = 0, 1, 2, . . . (4)

Therefore, b̂ = ρ̂(1), where ˆ denotes an estimated parameter. There are various

methods that can estimate b̂, and ρ̂(1) may be estimated from the sample ACF.

However, what is crucial to remember is that the true ρ(1) will be the same as the

one in the RCM model described below because, by definition, it is independent of

the two models. Therefore, the estimated coefficients of the sample ACF should be

the same, regardless of what regression model is run on the real exchange rate panel.

3 Random Effects Model

Now consider adding a time-invariant random effect error to (2). This is similar to

assuming a RCM of equation (1), but ignores the interaction of the lagged dependent

variable and the coefficient’s random error term. This specification drastically sim-

plifies the algebra, and will still give the general intuition behind what is happening

in the RCM specification.The AR(1) process can therefore be written as:

qi,j,t = a + bqi,j,t−1 + ei,j,t + ui,j, (5)

where E(ei,j,t) = 0, E
(
e2

i,j,t

)
= σ2

e , E(ei,j,tei,j,s) = 0 if t 6= s, E(ui,j) = 0, E
(
u2

i,j

)
= σ2

u,

and E(ei,j,tui,j) = 0 ∀ t. One can then easily show that the autocorrelation function
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ρ(·) is:

ρ(τ) = s + (1− s)bτ , (6)

where ρ(0) = 1 and

s =

σ2
u

(1−b)2

σ2
u

(1−b)2
+ σ2

e

1−b2

.

Therefore, b̃ = ρ̃(1)−s̃
1−s̃

, where˜denotes an estimated parameter. Please see Appendix

A for a derivation of this result as well as an explanation for why σ2
u does not drop

out of the derivation.

Next, consider the true population parameters. Since s is positive and ρ does not

vary across the two models, as discussed above, one arrives at:

b̃ =
ρ̃(1)− s̃

1− s̃
=

ρ̂(1)− s̃

1− s̃
< ρ̂(1) = b̂, (7)

since the estimated ρ will be less than one as long as the process is stationary.

Equation (7) formalizes the proposition stated in the introduction of this note. In

particular, one should expect that the estimated half-life is smaller in the RCM model

than a standard autoregressive model because of the extra term (s) that exists in the

ACF underlying the pricing dynamics specified in (5). The prices will still revert to the

mean once shocked, but will do so faster because of this additional terms. This is turn

leads the estimated b to be smaller. In essence, the inclusion of a time-invariant error

term effectively “soaks up” some of the autoregressive process that would otherwise

be captures by the lagged qi,j,t terms. There is nothing wrong with this if there is in

fact some constant autocorrelation in the underlying error structure, but is this really

the case? The next section attempts to answer this question graphically, as well as

arguing that a “simple fix” may help address the bias and measure to what extent

this problem exists in the data.
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4 Autocorrelation Functions

Figures 1-4 present sample autocorrelation and partial-autocorrelation functions (ACFs

and PACFs) for two sectors — bread (a tradeable sector) and rents (a non-tradeable

sector) — for thirteen countries. In examining, the ACF and PACF for bread in Fig-

ures 1 and 2 one can see that the (partial)autocorrelations tend towards zero as T gets

large. The one outlier appear to be Ireland, but this can explained by its relatively

short time-series. Standard tests cannot reject that the autocorrelation tends to zero

given a sufficient amount of time for the autocorrelation to dampen out.1 A similar

picture is seen when examining Figures 3 and 4 for rent. These results do not vary

across other sectors. Therefore, it would seem that one should assume zero correla-

tion of the underlying error structure. The RCM model estimated in Imbs, Mumtaz,

Ravn and Rey implicitly assumes a correlation between the coefficient errors greater

than zero over time, which given the graphical evidence just presented in this paper,

seems to point towards the estimated RCM coefficients being biased downwards.

How much this bias matters is a question that must still be answered, and I shall

not attempt to do so in great rigour in this this note. However, one strategy to do so

would be estimate a RCM model where one allows the coefficients to also correlate

across time (e.g., see Nicholls and Quinn 1982): bi,j,t = b + ξi,j,t, where ξi,j,t can be

modelled as correlated over time. This will allow more flexibility in the estimation

procedure, as well as allowing for the calibration of the model to see how much

correlation across errors over time must exist to yield the results of Imbs, Mumtaz,

Ravn and Rey; i.e., to match the bias created by the correlation of ui,j over time.

I shall forego this exercise, but there is another potentially easier way to address

the issue of bias. In particular, the time-invariant error term would not be a problem

1In particular Θ ≡
√

n(n+2)
n−k ρ(k) −→ N(0, 1), where ρ(k) is the kth autocorrelation, and n is the

total number of observations. See Ljung and Box (1978) and references within for more details on
this derivation. By examining fairly large k’s for the different sample autocorrelation functions, I
cannot reject that the statistic Θ is equal to zero.
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in the RCM estimation in practice if one allows a separate fixed intercept term, ai,j,

for each country-sector. These terms would soak up most of the fixed correlation

from the ui,j terms. However, the RCM estimation procedure used in the paper also

specifies that the intercept terms are random; hence, this does not help alleviate the

bias. Therefore, I also demean the data and estimate the RCM (without an intercept)

as well as examining the data at the country-sector level in Section 5.3 below to get

a sense of whether the bias is important or not. Before doing so, however, I turn to

analyzing the robustness of the RCM result using an augmented data set.

5 Additional Data

5.1 New Estimates

The Imbs, Mumtaz, Ravn and Rey sample only has nominal exchange rate data

dating back to 1991 or 1993 for six countries: Denmark, Finland, Greece, Ireland,

Portugal and the Netherlands. These missing observations cut more than ten years

of real exchange rate data from the sample per sector (for 10 years and 19 sectors,

this would amount to a loss of a potential of 6× 10× 12× 19 = 13680 observations).

I have updated these data and replicated three of the regressions.2 As can be seen in

Table 1, this makes quite a difference for the RCM estimation.

The point estimate for the RCM doubles and now looks more like the fixed effect

results, and is closer to matching the Rogoff “consensus view” of three to five years.

Furthermore, the lower confidence interval is now larger than the upper confidence

interval estimated using the original sample. This result is puzzling given that the

OLS and fixed effects estimates do not change greatly given the additional data. I

investigate this further in the next section by estimating the the models over different

2I also re-estimated the three models using the original data set. I could not exactly replicate
the results in the paper, but I was told this was because the results in the paper actually include an
additional sector from Norway in the final estimation. However, Haroon Mumtaz told me that my
results did match theirs when Norway was excluded, and I ignore this sector in what follows.
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Table 1
Half-Life Estimations using updated data

Model P
∑P

j=1 γj Half-Life 95% C.I.

RCM 5 0.9746 28 (25, 32)
OLS 12 0.9997 2809 (1642, 9766)
Fixed Effects 12 0.9762 33 (29, 36)

Total observations: RCM: 36513, OLS and FE: 34959.
Optimal P chosen by same criteria as in Imbs et al.
(2002). Confidence intervals are generated from half-life
distributions generated from bootstrapping methods for
1500 replications.

sample periods.

5.2 Robustness Check I: Sample Periods

The authors place a good deal of emphasis on how using monthly data is advantageous

because the time series will be longer. This is not completely true if one is interested

in examining whether the half-life is actually three to five years long. The frequency

of the data (monthly, quarterly or annual) should not affect the estimated half-life

(in a common metric). Therefore, one would ideally like to have many years of data,

regardless of the frequency of these data.3

I also estimate the models for quarterly and annual data. The data series seems

to be a bit short to say much meaningful about the annual data (the impulse re-

sponse function fluctuated quite a bit). However, I found the following half-life point

estimates for quarterly averaged data: RCM: 10 quarters (or 30 months), OLS: 580

quarters (or 1740 months), and FE: 12 quarters (or 36 months); see Table 2 in Ap-

pendix B for more details. These point estimates match the monthly ones in Table

1 quite well which is a nice robustness check, and points to the potential problem of

3Of course, the additional information gained from a monthly frequency should yield more precise
estimates.
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missing ten years of data in the original sample used by Imbs, Mumtaz, Ravn and

Rey.

I also estimate the three models at various time intervals. The tables of the

estimates are presented in Appendix B, so I shall only briefly discuss the results

here. First, I restrict the beginning of the sample for all countries to both 1991 and

1993 (see Table 3). Reducing the sample to 1991-96 lowers the half-lives considerably

for both the RCM and FE model, while the OLS estimate implies a non-stationary

relative price process.4 The estimate half-lives decrease even further when the sample

is restricted to 1993-96. These results are worrisome given that half the countries

used in the original sample have exchange rate data beginning in either 1991 or 1993.

Therefore, it would seem that the actual number of years used in the sample matters

quite a bit.

To further check this point, I estimate the three models at five and ten year in-

tervals (see Table 4). I begin these sample spans in 1980 as to maximize the number

of observations in the five and ten year periods. Again, the OLS estimates do not

change greatly over time periods. However, both the RCM and FE estimates have

some similar and interesting patterns. First, the 1980-84 five year period has a rela-

tively large half-life compared to the other five year periods for both models. Next,

the half-lives estimated for ten years are on average larger than those estimated for

five years for the RCM and FE model. This again points to the number of years used

being important in these panel regressions. Further research examining the differing

behaviour of the real exchange rate in the 1980s and the 1990s might be a fruitful

avenue to follow.

4I did not compute confidence intervals for these and the rest of the results in this paper given that
(a) examining the point estimates suffices for preliminary robustness checks, and (b) the estimates
will most probably be more imprecise (i.e., larger confidence intervals) given smaller sample sizes.
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5.3 Robustness Check II: Sector Level Estimates

Given my concerns about using the RCM model, I thought it would be interesting

to also estimate the individual sector half-lives by estimating an OLS individually

for each sector.5 Doing so (see Tables 5 and 6) yields an arithmetic average for the

half-life of 47 months. This number is quite a bit larger than the one estimated by

the RCM model in Table 1. However, if one runs a five-lag regression for each sector

and then take the average of each coefficient, the estimated half-life is 21 months.6

This average is similar to running a panel regression where one assumes that the

differences in sector coefficients difference are “fixed”. The difference in the half-

lives estimated from the two approaches is due to Jensen’s Inequality. Further work

should be done in thinking about this type of estimation (e.g., calculating reliable

confidence intervals, which will not be trivial given the small sample sizes for each

country-sector time series).7 Furthermore, if estimation is done at the individual

country-sector level, one might also consider using other estimation techniques, such

as threshold autoregressive (TAR) models.

Another strategy to check and see how important the bias may be is to run the

RCM on demeaned data without an intercept term. In other words, one can define

the variable zi,j,t = qi,j,t − (1/T )
∑T

τ=1 qi,j,τ , and then run the regression:

zi,j,t =
P∑

p=1

λi,j,pzi,j,t−p + ωi,j,t, (8)

where the λi,j,p’s are the random coefficients and the country-sector intercepts have

been incorporated as fixed effects by demeaning the real exchange rate. Estimating

(8) for five lags actually yields a half-life of 25 months using the expanded data set.

This estimate is actually smaller than that estimating using the “plain vanilla” RCM

5Imbs, Mumtaz, Ravn and Rey (2003) calculate these using a threshold autoregressive model.
6Results do not vary greatly for one- or two-lag regressions.
7Using the original data (less the one sector for Norway), the arithmetic average is 30 months,

while running separate five-lag regressions and the averaging the coefficients yields an estimated
half-life of 9 months.
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technique. This evidence, combined with the average half-life estimate of 21 months,

points to the bias not being important in the extended sample.

5.4 Tradability

I run AR(1) regressions for traded and non-traded sectors using the extended data. As

in Imbs, Mumtaz, Ravn and Rey, I compare the fixed effects and RCM estimations.

As can be seen in Table 7 in Appendix B, using the additional data actually reverse

the findings of Imbs, Mumtaz, Ravn and Rey. Now, Engel’s measure of variability

is actually smaller for the fixed effect estimation then for the RCM model (though

barely so). One may interpret this as aggregation bias being more severe for non-

traded goods (an opposite result to the paper). However, the concern of aggregation

bias may not be that important.

5.5 Robustness Check III: Extended Lag Structure

One can recover the shorter RCM half-life by extending the lag length to 36 months.

This yield a half-life of 17 months. However, as can be seen in Table 8, the upper-

confidence interval now rises to 69 months for the RCM estimation, implying quite

imprecise estimation. It is interesting to note, however, that the fixed effects regres-

sion yields a similar half-life as the regression in Table 1, and that the confidence

intervals remain quite tight. The fixed-effect/RCM model estimated by (8) yields a

half-life of 26 months for 36 lags, while the half-life resulting from estimating each

sector-country OLS separately and then averaging the coefficients (the group average)

is 15 months. I did not calculate the confidence intervals for these estimated half-lives,

but given the results from the RCM estimation in Table 8, one should expect that

they will be quite wide given the loss of information created by including three years

of lags. It is also interesting to note that the fixed-effect/RCM estimated half-life of

26 months is larger than the “plain vanilla” RCM estimate of 17 months, while the
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group average is 15 months. On the one hand, the result of 26 months points to a

positive bias existing in the RCM estimation procedure, while the 15 month estimate

points to the opposite holding.

I also ran these three models for 12 and 24 month lags as additional robustness

checks.8 The RCM, fixed-effect/RCM, and group average estimated half-lives for 12

and 24 months are [27,25,21] and [26,26,18], respectively. Again, the RCM estimates

of 27 and 26 months are higher than those found in the paper. However, there does not

seem to be any bias created by the RCM estimation, and the group average estimates

of 21 and 18 months are smaller than the RCM estimated half-lives. Further work on

determining the best model (as well as calculating appropriate confidence intervals) is

needed before making any definitive claims, but it would appear that the downward

bias resulting from the RCM model is not that important.

6 Conclusion

This note examines the interesting recent contribution on the estimation of real ex-

change rate persistence by Imbs, Mumtaz, Ravn and Rey. The authors points to the

existence of an upward bias in half-lives estimates when ignoring aggregation of sector

prices. The authors correct for this bias by estimating a random coefficient model

across sectors and find a much smaller average half-life.

This note makes two points. First, the RCM estimation procedure imposes certain

assumptions about the structure of the error processes underlying the data that do

not seem to conform to the actual structure, as seen in the sample autocorrelation

functions. This effect does not appear to be quantitatively important when examining

alternative estimation procedure (i.e., fixed-effect/RCM or group-average estimates).

However, more work might be done to refine these estimates and the potential problem

8The AIC points towards an optimal lag structure of about 21 months for the RCM model, but
the estimated half-life did not vary greatly compared to the 24 month specification that is being
presented.
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of the bias should at least be addressed.

Second, a simple extension of the data set appears to show that the RCM result in

the original paper is not robust. The estimated half-life using the RCM is quite larger

when including the extra data, and though one can rescue the result by including 36

lags, the upper confidence interval becomes much larger. However, group-average

estimates of the half-life appear to be similar to the main results in Imbs, Mumtaz,

Ravn and Rey. Further work should be done to address why the two estimation

techniques yield such differing results, and a deeper examination of the data appears

to be in order.9 Finally, it is interesting to note that the behaviour of the half-life

varies between the 1980s and the 1990s. More work addressing this issue might also

be interesting.
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A Derivation of Random Effects ACF

The derivation of the random effects autocorrelation function, equation (6) in Section

3 is a follows. First, solve for the expectation of qi,j,t, µ. Begin by re-writing (5) as:

(1− bL)qi,j,t = a + ei,j,t + ui,j, (9)

where L is the lag operator. Dividing both sides of (9) by (1 − bL), one can then

solve for qi,j,t as

qi,j,t =
a + ui,j

1− b
+

∞∑
s=0

bsei,j,t−s. (10)

Next, taking the expectation of (10), one can solve for µ

µ = E (qi,j,t)

= E

(
a + ui,j

1− b
+

∞∑
s=0

bsei,j,t−s

)

=
a

1− b
, (11)

since ui,j and ei,j,t have mean zero and are uncorrelated for all t.

Next, subtract (11) from (10), square and take expectations, to begin solving solve

for the autocorrelation function:

E
[
(qi,j,t − µ)2] = E




(
ui,j

1− b
+

∞∑
s=0

bsei,j,t−s

)2



=
1

(1− b)2
E

(
u2

i,j

)
+

1

(1− b2)
E

(
e2

i,j,t

)

=
σ2

u

(1− b)2
+

σ2
e

1− b2
, (12)

where the second line follows from the assumptions made that ui,j and ei,j,t are un-

correlated for all t, and that E (ei,j,tei,j,s] = 0 for all t 6= s. Equation (12) gives the
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denominator of the autocorrelation functions. Next, solve for the numerator:

E [(qi,j,t − µ) (qi,j,t−τ − µ)] = E

[(
ui,j

1− b
+

∞∑
s=0

bsei,j,t−s

)(
ui,j

1− b
+

∞∑
s=0

bsei,j,t−τ−s

)]

=
1

(1− b)2
E

(
u2

i,j

)
+

bτ

1− b2
E

(
e2

i,j,t

)

=
σ2

u

(1− b)2
+

bτ

1− b2
σ2

e , (13)

where the second line again follows from using the properties of the error terms.

Finally divide (13) by (12) to yield the autocorrelation function (6). Q.E.D.

It is not obvious why the country-sector specific error term, ui,j, is not consid-

ered fix in calculating the autocorrelation function. In particular, one might argue

that in picking a country-sector to analyze that the country-sector shock has been

realized, and the ui,j term should therefore be considered as fixed in calculating the

ACF. However, to show why this is not the case, consider the logic of the following

experiment that is run in calculating any given country-sector ACF.

Suppose that there are only two country-sector groups. Each country-sector group

is hit by a shock ui,j that has the same distribution for each group. Now, flip a coin

to decide which country-sector we will calculate the ACF for. Upon realization of the

flip of the coin, we know the country-sector of analysis. However, the crucial point to

remember is that we only know information about the distribution about the shock

ui,j that is hitting the country-sector, not what the shock actually is. Therefore, the

shock must still be treated as random when calculating the ACF.
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B Additional Tables

Table 2
Half-Life Estimations using updated quarterly data

Model P
∑P

j=1 γj Half-Life 95% C.I.

RCM 2 0.9279 10 (9,11)
30 (27,33)

OLS 12 0.9988 580 (404,1010)
1740 (1212,3030)

Fixed Effects 6 0.9370 12 (11,13)
36 (33,39)

For each model the first line gives the half-life in quar-
ters and the second line in months. Optimal P chosen by
same criteria as in Imbs et al. (2002). Confidence inter-
vals are generated from half-life distributions generated
from bootstrapping methods for 1500 replications.

Table 3
Estimation for 1991-1996

and 1993-1996 year periods

Model Years P
∑P

j=1 γj

RCM 1991-96 6 0.9053
1993-96 11 0.8073

OLS 1991-96 12 1.0001
1993-96 3 1.0003

Fixed Effects 1991-96 8 0.9058
1993-96 12 0.7993

Total observations: 1991-96: 12232,
1993-96: 6940. Optimal P chosen by
same criteria as in Imbs et al. (2002).
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Table 4
Estimation for 5 and 10 year periods

RCM

Years P
∑P

j=1 γj Observations

1980-84 12 0.9754 7407
1985-89 3 0.9381 12315
1990-94 7 0.8927 13182
1980-89 4 0.9514 20871
1985-94 5 0.9518 25411

OLS

Years P
∑P

j=1 γj Observations

1980-84 12 0.9992 7407
1985-89 3 0.9994 12315
1990-94 6 0.9999 13182
1980-89 2 0.9996 21254
1985-94 3 0.9995 25497

Fixed Effects

Years P
∑P

j=1 γj Observations

1980-84 12 0.9709 7407
1985-89 4 0.9401 12272
1990-94 2 0.9046 13182
1980-89 2 0.9674 21254
1985-94 8 0.9479 25282

Optimal P chosen by same criteria as
in Imbs et al. (2002).
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Table 5
Sector level half-life point estimates

Sector Belgium Denmark Finland France Germany Greece
Bread 22 59 21 31 43 27

(2) (2) (2) (2) (2) (2)
Meat 24 32 15 37 31 22

(2) (2) (2) (2) (2) (1)
Dairy 30 49 20 36 35 22

(2) (2) (2) (2) (2) (2)
Fruits 6 10 15 12 7 3

(2) (2) (2) (3) (2) (2)
Tobbaco 43 41 14 53 40 31

(1) (2) (2) (2) (4) (2)
Drinks 46 36 18 46 614 71

(1) (2) (2) (2) (2) (1)
Clothing 146 84 13 70 85 26

(3) (1) (2) (2) (3) (1)
Footwear 77 164 13 84 111 24

(2) (2) (2) (2) (2) (1)
Rents 38 77 13 61 69 278

(2) (2) (2) (2) (2) (2)
Fuel 15 49 52 44 21

(1) (2) (1) (1) (1)
Furniture 98 192 224 141 53

(2) (2) (2) (2) (1)
Dom. App 56 69 58 52 17

(2) (2) (2) (2) (1)
Vehicles 17 59 6 25 35 6

(2) (2) (2) (2) (2) (2)
Pub. Trans 22 12 15 27 62 12

(2) (1) (2) (2) (2) (1)
Communic 31 88 19 19 41 36

(2) (2) (2) (2) (2) (1)
Sound 41 62 17 52 37 37

(3) (2) (2) (2) (2) (1)
Leisure 33 54 15 35 31 53

(2) (2) (2) (2) (2) (2)
Books 41 71 16 31 39 108

(2) (2) (2) (2) (2) (2)
Hotel 20 13 17 16 16 41

(2) (2) (2) (5) (3) (1)

OLS estimation, with optimal P in (parentheses) chosen by same criteria
as in Imbs et al. (2002).
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Table 6
Sector level half-life point estimates cont’d

Sector Ireland Italy Netherlands Portugal Spain UK
Bread 11 35 24 54 96 15

(2) (2) (2) (1) (2) (4)
Meat 8 29 29 18 43 10

(2) (2) (2) (2) (2) (2)
Dairy 6 47 34 3 45 21

(2) (2) (2) (3) (1) (2)
Fruits 5 18 9 9 20 9

(3) (3) (3) (2) (1) (2)
Tobbaco 6 17 32 18 24 19

(2) (1) (2) (1) (1) (2)
Drinks 10 53 34 150 124 30

(2) (2) (2) (2) (1) (2)
Clothing 5 60 12 224 117 12

(3) (3) (5) (3) (3) (2)
Footwear 7 65 5 113 104 15

(2) (2) (1) (2) (2) (2)
Rents 7 43 72 31 30

(2) (2) (2) (2) (2)
Fuel 8 40 28 52 35 35

(2) (2) (1) (1) (1) (1)
Furniture 113 113 511 183 34

(2) (2) (2) (2) (2)
Dom. App 6 57 53 139 82 19

(2) (2) (2) (2) (2) (2)
Vehicles 1 16 29 59 31 10

(2) (2) (2) (2) (2) (2)
Pub. Trans 9 39 29 22 58 16

(2) (2) (2) (1) (1) (2)
Communic 6 30 50 16 42 18

(2) (2) (2) (2) (2) (2)
Sound 13 59 35 57 24

(2) (2) (2) (3) (4)
Leisure 9 48 30 21 62 18

(2) (2) (2) (1) (2) (4)
Books 5 51 28 73 54 20

(2) (4) (2) (2) (2) (4)
Hotel 7 16 14 37 23 15

(2) (3) (2) (2) (3) (5)

OLS estimation, with optimal P in (parentheses) chosen by same cri-
teria as in Imbs et al. (2002).
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Table 7
Engel’s R

Fixed Effects RCM
p R p R
6 0.5201 6 0.5279
12 0.5200 12 0.5280
24 0.5200 24 0.5280
60 0.5200 60 0.5280
100 0.5200 100 0.5280
180 0.5199 180 0.5280
240 0.5199 240 0.5280
ρ̂ 0.9787 ρ̂ 0.9768
µ̂ 0.9768 µ̂ 0.9778
σ̂2 0.0039 σ̂2 0.0043
τ̂ 2 0.0039 τ̂ 2 0.0037

The following AR(1) regressions are estimated. Traded goods: xj,t = ρxj,t−1 + εt,
where Var(εt) = σ2 and all {εt} are uncorrelated. Non-traded goods: nj,t = µnj,t−1 +
et, where Var(et) = τ 2 and all {et} are uncorrelated. Finally, {εt} and {et} are
orthogonal.

Table 8
Estimation for 36 Lags

Model Half-Life 95% C.I.
RCM 17 (15, 69)
OLS 921 (1306, 2401)
FE 28 (21, 30)
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Figure 1
Sample autocorrelation functions
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Figure 2
Sample partial-autocorrelation functions
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Figure 3
Sample autocorrelation functions
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Figure 4
Sample partial-autocorrelation functions
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Partial Correlogram
Country: BEL, Sector: 1310

 Partial autocorrelations  Standardized variances
 95% conf. bands [se = 1/sqrt(n)
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Partial Correlogram
Country: DEU, Sector: 1310

 Partial autocorrelations  Standardized variances
 95% conf. bands [se = 1/sqrt(n)
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Partial Correlogram
Country: DNK, Sector: 1310

 Partial autocorrelations  Standardized variances
 95% conf. bands [se = 1/sqrt(n)
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Partial Correlogram
Country: ESP, Sector: 1310

 Partial autocorrelations  Standardized variances
 95% conf. bands [se = 1/sqrt(n)
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Partial Correlogram
Country: FIN, Sector: 1310

 Partial autocorrelations  Standardized variances
 95% conf. bands [se = 1/sqrt(n)
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Partial Correlogram
Country: FRA, Sector: 1310

 Partial autocorrelations  Standardized variances
 95% conf. bands [se = 1/sqrt(n)
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Partial Correlogram
Country: GBR, Sector: 1310

 Partial autocorrelations  Standardized variances
 95% conf. bands [se = 1/sqrt(n)
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Partial Correlogram
Country: GRC, Sector: 1310

 Partial autocorrelations  Standardized variances
 95% conf. bands [se = 1/sqrt(n)
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Partial Correlogram
Country: IRL, Sector: 1310

 Partial autocorrelations  Standardized variances
 95% conf. bands [se = 1/sqrt(n)
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Partial Correlogram
Country: ITA, Sector: 1310

 Partial autocorrelations  Standardized variances
 95% conf. bands [se = 1/sqrt(n)
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Partial Correlogram
Country: NLD, Sector: 1310

 Partial autocorrelations  Standardized variances
 95% conf. bands [se = 1/sqrt(n)
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